11月21日,中國工程院院士沈政昌在湖北武漢舉行的2022中國5G+工業互聯網大會“5G+工業互聯網+智慧礦山”分論壇上發表了視頻演講。沈政昌院士從礦冶智能工廠建設框架、礦冶智能工廠智能物聯終端、基于數字孿生的(de)礦冶(ye)流(liu)程優化(hua)、基于(yu)工業(ye)互聯網的(de)礦冶(ye)過(guo)程智慧管控、未來展望五(wu)個方面(mian)介紹了面(mian)向“5G+工業(ye)互聯網”的(de)礦冶(ye)過(guo)程智能優化(hua)制造(zao)關鍵技術,并(bing)提(ti)出要構(gou)建跨學科、跨專業(ye)、跨領域(yu)的(de)跨界合作新格局。
在礦冶智(zhi)(zhi)能(neng)工(gong)(gong)廠(chang)(chang)(chang)建(jian)設(she)(she)框架方面,沈政(zheng)昌指出(chu),從(cong)需求角度看(kan),綠(lv)色低碳轉型升級的首要(yao)任務是實現多層級的數據互(hu)聯(lian)互(hu)通(tong)(tong),礦冶智(zhi)(zhi)能(neng)工(gong)(gong)廠(chang)(chang)(chang)需要(yao)新一代信息技術與制造業深度融合;從(cong)工(gong)(gong)廠(chang)(chang)(chang)建(jian)設(she)(she)角度看(kan),礦冶領域(yu)的知(zhi)識與業務是礦冶智(zhi)(zhi)能(neng)工(gong)(gong)廠(chang)(chang)(chang)建(jian)設(she)(she)的核心,5G技術提(ti)供選冶全要(yao)素集(ji)成通(tong)(tong)道,工(gong)(gong)業互(hu)聯(lian)網(wang)技術提(ti)供領域(yu)知(zhi)識、業務沉淀與執行載(zai)體,“5G+工(gong)(gong)業互(hu)聯(lian)網(wang)”能(neng)夠實現業務橫(heng)向(xiang)(xiang)與縱向(xiang)(xiang)的集(ji)成,實現全局視角的業務開發利(li)用。
在礦冶智能工廠智能物聯終端方面,沈政昌表示,礦冶生產圍繞著不同類型的設備開展,隨著5G技術、人工智能技術(shu)的(de)(de)發(fa)展(zhan)應用,使(shi)得(de)濃密機壓力檢(jian)測(ce)成為可(ke)能;自(zi)動(dong)(dong)作(zuo)(zuo)業(ye)的(de)(de)礦(kuang)冶(ye)工業(ye)機器(qi)人(ren)提(ti)高(gao)了(le)(le)生(sheng)產作(zuo)(zuo)業(ye)效率,降低了(le)(le)專業(ye)勞動(dong)(dong)強度,使(shi)礦(kuang)冶(ye)生(sheng)產過程(cheng)做到了(le)(le)少人(ren)化(hua)(hua)(hua)、無人(ren)化(hua)(hua)(hua);移動(dong)(dong)信息采集管(guan)理系(xi)(xi)統對非(fei)結構化(hua)(hua)(hua)數據(ju)進(jin)行采集、分(fen)析與管(guan)控(kong),這是人(ren)與物互聯(lian)的(de)(de)技術(shu)核心,也包括移動(dong)(dong)巡檢(jian)、人(ren)員定位、無線傳感器(qi)等技術(shu);智慧視覺系(xi)(xi)統可(ke)以實現防堵監控(kong)、篩網破損檢(jian)測(ce)等功能,其(qi)中5G和(he)互聯(lian)網的(de)(de)引入降低了(le)(le)云端計算和(he)施工的(de)(de)難度,促進(jin)了(le)(le)行業(ye)的(de)(de)智能化(hua)(hua)(hua)發(fa)展(zhan)。
在基于數(shu)(shu)(shu)字(zi)孿(luan)(luan)生(sheng)(sheng)(sheng)的(de)(de)(de)礦冶流(liu)程優化(hua)方面(mian),沈(shen)政昌表示(shi),數(shu)(shu)(shu)字(zi)孿(luan)(luan)生(sheng)(sheng)(sheng)是第(di)四次工(gong)業革命(ming)的(de)(de)(de)通(tong)用技術(shu),在礦冶流(liu)程與(yu)優化(hua)領域,通(tong)過與(yu)設備(bei)專(zhuan)家、工(gong)藝專(zhuan)家、現場(chang)操作專(zhuan)家的(de)(de)(de)交(jiao)互形成(cheng)數(shu)(shu)(shu)字(zi)孿(luan)(luan)生(sheng)(sheng)(sheng)系(xi)統(tong)生(sheng)(sheng)(sheng)產知識(shi)庫,再通(tong)過與(yu)經(jing)營(ying)管理專(zhuan)家的(de)(de)(de)交(jiao)互達成(cheng)數(shu)(shu)(shu)字(zi)優化(hua)經(jing)營(ying)模式,最終提(ti)升關(guan)鍵流(liu)程的(de)(de)(de)運行效(xiao)率(lv),這是數(shu)(shu)(shu)字(zi)孿(luan)(luan)生(sheng)(sheng)(sheng)系(xi)統(tong)的(de)(de)(de)首要價值(zhi)。從(cong)礦冶加工(gong)角度來看,數(shu)(shu)(shu)字(zi)孿(luan)(luan)生(sheng)(sheng)(sheng)技術(shu)可以設計智能化(hua)實驗系(xi)統(tong),利用工(gong)藝礦物學自動檢測(ce)系(xi)統(tong)實現報告的(de)(de)(de)自動生(sheng)(sheng)(sheng)成(cheng),極大地提(ti)高了工(gong)作效(xiao)率(lv)。
在基(ji)(ji)于(yu)工(gong)(gong)業互(hu)聯網的(de)(de)礦(kuang)(kuang)(kuang)冶過(guo)(guo)(guo)程(cheng)智慧管(guan)(guan)控(kong)(kong)方(fang)面,沈(shen)政昌指出,設(she)(she)備遠程(cheng)智慧管(guan)(guan)控(kong)(kong)是工(gong)(gong)業互(hu)聯網搭(da)建的(de)(de)綜(zong)合技術架(jia)構,包括研(yan)發數(shu)(shu)據域、生產(chan)、運維、管(guan)(guan)理(li)(li)(li)、外部數(shu)(shu)據域,采集數(shu)(shu)據后進(jin)行(xing)管(guan)(guan)理(li)(li)(li)建模,結(jie)合可視(shi)化手段形成職(zhi)能(neng)管(guan)(guan)控(kong)(kong)服務。基(ji)(ji)于(yu)工(gong)(gong)業互(hu)聯網平臺可以(yi)方(fang)便地實現生產(chan)管(guan)(guan)理(li)(li)(li)、化驗管(guan)(guan)理(li)(li)(li)、能(neng)源管(guan)(guan)理(li)(li)(li)、設(she)(she)備運行(xing)管(guan)(guan)理(li)(li)(li)等服務,使碎(sui)片化的(de)(de)生產(chan)數(shu)(shu)據集中起(qi)來(lai),更有利(li)于(yu)數(shu)(shu)據的(de)(de)整(zheng)理(li)(li)(li)、分(fen)析(xi)(xi)。礦(kuang)(kuang)(kuang)冶集團(tuan)全(quan)球BOXA分(fen)析(xi)(xi)儀(yi)可以(yi)在云平臺同步(bu)監(jian)視(shi)各臺設(she)(she)備的(de)(de)運行(xing)情況,提(ti)升工(gong)(gong)作效率并提(ti)高設(she)(she)備周轉(zhuan)率。沈(shen)政昌還(huan)談到,充分(fen)發掘平臺的(de)(de)數(shu)(shu)據資源,實現設(she)(she)備和(he)流程(cheng)的(de)(de)診斷、評議和(he)決策很重(zhong)要。設(she)(she)備故障診斷和(he)管(guan)(guan)控(kong)(kong)的(de)(de)核心需求一是基(ji)(ji)于(yu)設(she)(she)備的(de)(de)數(shu)(shu)據進(jin)行(xing)故障診斷,二是在流程(cheng)層面通(tong)過(guo)(guo)(guo)數(shu)(shu)據建模分(fen)析(xi)(xi)實現選礦(kuang)(kuang)(kuang)關(guan)(guan)鍵流程(cheng)生產(chan)狀態監(jian)控(kong)(kong)和(he)健康評價,對浮(fu)選過(guo)(guo)(guo)程(cheng)進(jin)行(xing)深度學習(xi),結(jie)合數(shu)(shu)據分(fen)析(xi)(xi)實現浮(fu)選過(guo)(guo)(guo)程(cheng)綜(zong)合監(jian)控(kong)(kong),并基(ji)(ji)于(yu)深度學習(xi)建立泡沫圖像、過(guo)(guo)(guo)程(cheng)參數(shu)(shu)與工(gong)(gong)況映射關(guan)(guan)系,綜(zong)合大數(shu)(shu)據模型(xing)輸出值(zhi)評價當前工(gong)(gong)況,基(ji)(ji)于(yu)統計學習(xi)實現影響變量回溯和(he)評價模型(xing)自更新。
沈政昌指出,面向“5G+工業互聯網”的礦冶智能優化技術是可以幫助我們實現行業技術升級的途徑之一,未來可以從三維、云平臺、深度融合、元宇宙四個方面入手進一步深(shen)(shen)入研究實(shi)踐。首先是建立工廠全(quan)生命周期數(shu)字(zi)(zi)孿生、全(quan)流程數(shu)字(zi)(zi)化(hua)(hua)和全(quan)運(yun)行(xing)(xing)三維(wei)一體化(hua)(hua)的(de)(de)核心;其(qi)次是打(da)通從(cong)設計到(dao)運(yun)行(xing)(xing)的(de)(de)數(shu)字(zi)(zi)化(hua)(hua)通道(dao),開發設計運(yun)行(xing)(xing)一體化(hua)(hua)平臺,有(you)助于行(xing)(xing)業(ye)數(shu)字(zi)(zi)化(hua)(hua)智(zhi)能(neng)化(hua)(hua)升級,智(zhi)能(neng)服務云平臺技(ji)(ji)術將極(ji)大地(di)提升行(xing)(xing)業(ye)數(shu)字(zi)(zi)化(hua)(hua)覆蓋范圍和集成度(du),提供更(geng)便捷、更(geng)高效的(de)(de)數(shu)據(ju)應(ying)用方式;再(zai)次是實(shi)現(xian)(xian)管控與(yu)業(ye)務的(de)(de)深(shen)(shen)度(du)融(rong)合,在更(geng)深(shen)(shen)層次體現(xian)(xian)行(xing)(xing)業(ye)數(shu)字(zi)(zi)化(hua)(hua)智(zhi)能(neng)化(hua)(hua)水平;最后,元宇宙技(ji)(ji)術將在礦冶行(xing)(xing)業(ye)出(chu)現(xian)(xian)典型的(de)(de)應(ying)用場景。